- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
Independent Variables in Psychology
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amanda Tust is an editor, fact-checker, and writer with a Master of Science in Journalism from Northwestern University's Medill School of Journalism.
Adam Berry / Getty Images
- Identifying
Potential Pitfalls
The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment.
For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).
In general, experiments have these three types of variables: independent, dependent, and controlled.
Identifying the Independent Variable
If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:
- Is the variable one that is being manipulated by the experimenters?
- Are researchers trying to identify how the variable influences another variable?
- Is the variable something that cannot be changed but that is not dependent on other variables in the experiment?
Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).
Below are the key differences when looking at an independent variable vs. dependent variable.
Expected to influence the dependent variable
Doesn't change as a result of the experiment
Can be manipulated by researchers in order to study the dependent variable
Expected to be affected by the independent variable
Expected to change as a result of the experiment
Not manipulated by researchers; its changes occur as a result of the independent variable
There can be all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.
Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.
In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.
To understand this concept, it's helpful to take a look at the independent variable in research examples.
In Organizations
A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.
In the Workplace
A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.
In Educational Research
Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.
In Mental Health Research
Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy .
Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.
At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.
Choosing an Independent Variable
If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):
- Select independent variables that you think will cause changes in another variable. Come up with a hypothesis for what you expect to happen.
- Look at other experiments for examples and identify different types of independent variables.
- Keep your control group and experimental groups similar in other characteristics, but vary only the treatment they receive in terms of the independent variable. For example, your control group will receive either no treatment or no changes in the independent variable while your experimental group will receive the treatment or a different level of the independent variable.
It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:
- Extraneous variables : These are variables that might affect the relationships between the independent variable and the dependent variable; experimenters usually try to identify and control for these variables.
- Confounding variables : When an extraneous variable cannot be controlled for in an experiment, it is known as a confounding variable .
Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).
Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size . Indian Dermatol Online J . 2019;10(1):82-86. doi:10.4103/idoj.IDOJ_468_18
Weiten, W. Psychology: Themes and Variations, 10th ed . Boston, MA: Cengage Learning; 2017.
National Library of Medicine. Dependent and independent variables .
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
15 Independent and Dependent Variable Examples
Dave Cornell (PhD)
Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.
Learn about our Editorial Process
Chris Drew (PhD)
This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.
An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).
By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.
This can provide very valuable information when studying just about any subject.
Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.
The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.
Definition of Independent and Dependent Variables
The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .
Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.
The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).
Other variations of an experiment might include having multiple levels of the independent variable.
If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.
Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.
These concepts should not be confused with predictor and outcome variables .
Examples of Independent and Dependent Variables
1. gatorade and improved athletic performance.
A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.
If they can back up that claim with hard scientific data, that would be great for sales.
So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.
All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.
In this example, the independent variable is Gatorade, and the dependent variable is heart rate.
2. Chemotherapy and Cancer
A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.
The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.
Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.
In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.
3. Interior Design Color and Eating Rate
A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.
So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.
Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.
The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.
4. Hair Color and Attraction
A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.
Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.
At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.
The independent variable is hair color, and the dependent variable is pupil dilation.
5. Mozart and Math
After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.
During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.
The researchers then compare the scores of the exams between the two groups of classrooms.
Although there are a lot of obvious limitations to this hypothetical, it is the first step.
The independent variable is Mozart, and the dependent variable is exam scores.
6. Essential Oils and Sleep
A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.
The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.
At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.
The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.
7. Teaching Style and Learning
A group of teachers is interested in which teaching method will work best for developing critical thinking skills.
So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.
At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.
The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.
8. Concrete Mix and Bridge Strength
A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.
So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.
In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.
9. Recipe and Consumer Preferences
People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.
The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.
Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.
The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.
10. Protein Supplements and Muscle Mass
A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.
The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.
They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.
At the end of three months, the muscle mass of all participants is measured.
The independent variable is the supplement, and the dependent variable is muscle mass.
11. Air Bags and Skull Fractures
In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.
In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.
The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.
The independent variable was the airbag and the dependent variable was the amount of skull damage.
12. Vitamins and Health
Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.
They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”
Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.
In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.
At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.
In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.
13. Meditation and Stress
Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.
All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.
Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.
How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.
In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).
14. Video Games and Aggression
When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.
Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.
Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.
So many studies have used so many different ways of measuring aggression.
In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.
15. Vehicle Exhaust and Cognitive Performance
Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.
One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.
After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.
One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.
In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.
Read Next: Extraneous Variables Examples
The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.
For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.
The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.
Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941
Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374
Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583
Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.
Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66. https://doi.org/10.1080/10790195.2012.10850354
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
- Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
- Science Notes Posts
- Contact Science Notes
- Todd Helmenstine Biography
- Anne Helmenstine Biography
- Free Printable Periodic Tables (PDF and PNG)
- Periodic Table Wallpapers
- Interactive Periodic Table
- Periodic Table Posters
- Science Experiments for Kids
- How to Grow Crystals
- Chemistry Projects
- Fire and Flames Projects
- Holiday Science
- Chemistry Problems With Answers
- Physics Problems
- Unit Conversion Example Problems
- Chemistry Worksheets
- Biology Worksheets
- Periodic Table Worksheets
- Physical Science Worksheets
- Science Lab Worksheets
- My Amazon Books
What Is an Independent Variable? Definition and Examples
The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable . It doesn’t depend on another variable and isn’t changed by any factors an experimenter is trying to measure. The independent variable is denoted by the letter x in an experiment or graph.
INDEPENDENT VARIABLE EXAMPLE
Two classic examples of independent variables are age and time. They may be measured, but not controlled. In experiments, even if measured time isn’t the variable, it may relate to duration or intensity.
For example, a scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light and the moth’s reaction is the dependent variable.
For another example, say you are measuring whether amount of sleep affects test scores. The hours of sleep would be the independent variable while the test scores would be dependent variable.
A change in the independent variable directly causes a change in the dependent variable. If you have a hypothesis written such that you’re looking at whether x affects y , the x is always the independent variable and the y is the dependent variable.
GRAPHING THE INDEPENDENT VARIABLE
If the dependent and independent variables are plotted on a graph, the x-axis would be the independent variable and the y-axis would be the dependent variable. You can remember this using the DRY MIX acronym, where DRY means dependent or responsive variable is on the y-axis, while MIX means the manipulated or independent variable is on the x-axis.
Related Posts
/home/sheriexplores/apps/config.php line 19 SQLSTATE[HY000] [2002] No such file or directory
- Science, Tech, Math ›
- Chemistry ›
What Is a Variable in Science?
Understanding Variables in a Science Experiment
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Scientific Method
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
Variables are an important part of science projects and experiments. What is a variable? Basically, a variable is any factor that can be controlled, changed, or measured in an experiment. Scientific experiments have several types of variables. The independent and dependent variables are the ones usually plotted on a chart or graph, but there are other types of variables you may encounter.
Types of Variables
- Independent Variable: The independent variable is the one condition that you change in an experiment. Example: In an experiment measuring the effect of temperature on solubility, the independent variable is temperature.
- Dependent Variable: The dependent variable is the variable that you measure or observe. The dependent variable gets its name because it is the factor that is dependent on the state of the independent variable . Example: In the experiment measuring the effect of temperature on solubility, solubility would be the dependent variable.
- Controlled Variable: A controlled variable or constant variable is a variable that does not change during an experiment. Example : In the experiment measuring the effect of temperature on solubility, controlled variable could include the source of water used in the experiment, the size and type of containers used to mix chemicals, and the amount of mixing time allowed for each solution.
- Extraneous Variables: Extraneous variables are "extra" variables that may influence the outcome of an experiment but aren't taken into account during measurement. Ideally, these variables won't impact the final conclusion drawn by the experiment, but they may introduce error into scientific results. If you are aware of any extraneous variables, you should enter them in your lab notebook . Examples of extraneous variables include accidents, factors you either can't control or can't measure, and factors you consider unimportant. Every experiment has extraneous variables. Example : You are conducting an experiment to see which paper airplane design flies longest. You may consider the color of the paper to be an extraneous variable. You note in your lab book that different colors of papers were used. Ideally, this variable does not affect your outcome.
Using Variables in Science Experiment
In a science experiment , only one variable is changed at a time (the independent variable) to test how this changes the dependent variable. The researcher may measure other factors that either remain constant or change during the course of the experiment but are not believed to affect its outcome. These are controlled variables. Any other factors that might be changed if someone else conducted the experiment but seemed unimportant should also be noted. Also, any accidents that occur should be recorded. These are extraneous variables.
Variables and Attributes
In science, when a variable is studied, its attribute is recorded. A variable is a characteristic, while an attribute is its state. For example, if eye color is the variable, its attribute might be green, brown, or blue. If height is the variable, its attribute might be 5 m, 2.5 cm, or 1.22 km.
- Earl R. Babbie. The Practice of Social Research , 12th edition. Wadsworth Publishing, 2009.
- What Is a Dependent Variable?
- What Is an Experiment? Definition and Design
- Six Steps of the Scientific Method
- Examples of Independent and Dependent Variables
- How To Design a Science Fair Experiment
- The Role of a Controlled Variable in an Experiment
- Scientific Variable
- What Are the Elements of a Good Hypothesis?
- Dependent Variable vs. Independent Variable: What Is the Difference?
- What Is the Difference Between a Control Variable and Control Group?
- Independent Variable Definition and Examples
- Null Hypothesis Examples
- What Is a Controlled Experiment?
- DRY MIX Experiment Variables Acronym
- Scientific Method Vocabulary Terms
- What Is the Difference Between Hard and Soft Science?
Advertisement
The Independent Variable vs. Dependent Variable in Research
- Share Content on Facebook
- Share Content on LinkedIn
- Share Content on Flipboard
- Share Content on Reddit
- Share Content via Email
In any scientific research, there are typically two variables of interest: independent variables and dependent variables. In forming the backbone of scientific experiments , they help scientists understand relationships, predict outcomes and, in general, make sense of the factors that they're investigating.
Understanding the independent variable vs. dependent variable is so fundamental to scientific research that you need to have a good handle on both if you want to design your own research study or interpret others' findings.
To grasp the distinction between the two, let's delve into their definitions and roles.
What Is an Independent Variable?
What is a dependent variable, research study example, predictor variables vs. outcome variables, other variables, the relationship between independent and dependent variables.
The independent variable, often denoted as X, is the variable that is manipulated or controlled by the researcher intentionally. It's the factor that researchers believe may have a causal effect on the dependent variable.
In simpler terms, the independent variable is the variable you change or vary in an experiment so you can observe its impact on the dependent variable.
The dependent variable, often represented as Y, is the variable that is observed and measured to determine the outcome of the experiment.
In other words, the dependent variable is the variable that is affected by the changes in the independent variable. The values of the dependent variable always depend on the independent variable.
Let's consider an example to illustrate these concepts. Imagine you're conducting a research study aiming to investigate the effect of studying techniques on test scores among students.
In this scenario, the independent variable manipulated would be the studying technique, which you could vary by employing different methods, such as spaced repetition, summarization or practice testing.
The dependent variable, in this case, would be the test scores of the students. As the researcher following the scientific method , you would manipulate the independent variable (the studying technique) and then measure its impact on the dependent variable (the test scores).
You can also categorize variables as predictor variables or outcome variables. Sometimes a researcher will refer to the independent variable as the predictor variable since they use it to predict or explain changes in the dependent variable, which is also known as the outcome variable.
When conducting an experiment or study, it's crucial to acknowledge the presence of other variables, or extraneous variables, which may influence the outcome of the experiment but are not the focus of study.
These variables can potentially confound the results if they aren't controlled. In the example from above, other variables might include the students' prior knowledge, level of motivation, time spent studying and preferred learning style.
As a researcher, it would be your goal to control these extraneous variables to ensure you can attribute any observed differences in the dependent variable to changes in the independent variable. In practice, however, it's not always possible to control every variable.
The distinction between independent and dependent variables is essential for designing and conducting research studies and experiments effectively.
By manipulating the independent variable and measuring its impact on the dependent variable while controlling for other factors, researchers can gain insights into the factors that influence outcomes in their respective fields.
Whether investigating the effects of a new drug on blood pressure or studying the relationship between socioeconomic factors and academic performance, understanding the role of independent and dependent variables is essential for advancing knowledge and making informed decisions.
Correlation vs. Causation
Understanding the relationship between independent and dependent variables is essential for making sense of research findings. Depending on the nature of this relationship, researchers may identify correlations or infer causation between the variables.
Correlation implies that changes in one variable are associated with changes in another variable, while causation suggests that changes in the independent variable directly cause changes in the dependent variable.
Control and Intervention
In experimental research, the researcher has control over the independent variable, allowing them to manipulate it to observe its effects on the dependent variable. This controlled manipulation distinguishes experiments from other types of research designs.
For example, in observational studies, researchers merely observe variables without intervention, meaning they don't control or manipulate any variables.
Context and Analysis
Whether it's intentional or unintentional, independent, dependent and other variables can vary in different contexts, and their effects may differ based on various factors, such as age, characteristics of the participants, environmental influences and so on.
Researchers employ statistical analysis techniques to measure and analyze the relationships between these variables, helping them to draw meaningful conclusions from their data.
We created this article in conjunction with AI technology, then made sure it was fact-checked and edited by a HowStuffWorks editor.
Please copy/paste the following text to properly cite this HowStuffWorks.com article:
Independent and Dependent Variables
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.
In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.
Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.
Independent Variable
In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.
It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.
For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).
In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.
By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.
For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.
Dependent Variable
In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.
In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.
An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).
In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.
For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).
Examples in Research Studies
For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.
In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).
For the following hypotheses, name the IV and the DV.
1. Lack of sleep significantly affects learning in 10-year-old boys.
IV……………………………………………………
DV…………………………………………………..
2. Social class has a significant effect on IQ scores.
DV……………………………………………….…
3. Stressful experiences significantly increase the likelihood of headaches.
4. Time of day has a significant effect on alertness.
Operationalizing Variables
To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.
Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).
For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.
Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.
In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.
The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.
If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.
Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .
For the following hypotheses, name the IV and the DV and operationalize both variables.
1. Women are more attracted to men without earrings than men with earrings.
I.V._____________________________________________________________
D.V. ____________________________________________________________
Operational definitions:
I.V. ____________________________________________________________
2. People learn more when they study in a quiet versus noisy place.
I.V. _________________________________________________________
D.V. ___________________________________________________________
3. People who exercise regularly sleep better at night.
Can there be more than one independent or dependent variable in a study?
Yes, it is possible to have more than one independent or dependent variable in a study.
In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.
Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.
What are some ethical considerations related to independent and dependent variables?
Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.
Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.
Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.
Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.
Can qualitative data have independent and dependent variables?
Yes, both quantitative and qualitative data can have independent and dependent variables.
In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.
The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.
So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.
Can the same variable be independent in one study and dependent in another?
Yes, the same variable can be independent in one study and dependent in another.
The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.
However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.
The role of a variable as independent or dependent can vary depending on the research question and study design.
IMAGES
VIDEO
COMMENTS
Independent Variable. The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the "controlled variable" because it is the one that is changed or controlled.
Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half. ... Experimental design is the process of planning an experiment to test a hypothesis. The choices you make affect the validity of your results. 1520.
The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable.
An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV). By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.
The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable.It doesn't depend on another variable and isn't changed by any factors an experimenter is trying to measure. The independent variable is denoted by the letter x in an experiment or graph. INDEPENDENT VARIABLE EXAMPLE
The dependent variable is the factor that changes as a result of the change to the independent variable. The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.
An independent variable is defined as a variable that is changed or controlled in a scientific experiment. The independent variable represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test his or her dependent variable. A change in the independent variable directly causes a ...
Using Variables in Science Experiment . In a science experiment, only one variable is changed at a time (the independent variable) to test how this changes the dependent variable.The researcher may measure other factors that either remain constant or change during the course of the experiment but are not believed to affect its outcome.
In any scientific research, there are typically two variables of interest: independent variables and dependent variables. In forming the backbone of scientific experiments, they help scientists understand relationships, predict outcomes and, in general, make sense of the factors that they're investigating.. Understanding the independent variable vs. dependent variable is so fundamental to ...
In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable. It's considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting.